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a b s t r a c t

A method is presented to use continuous wave electron paramagnetic resonance imaging for rapid mea-
surement of oxygen partial pressure in three spatial dimensions. A particulate paramagnetic probe is
employed to create a sparse distribution of spins in a volume of interest. Information encoding location
and spectral linewidth is collected by varying the spatial orientation and strength of an applied magnetic
gradient field. Data processing exploits the spatial sparseness of spins to detect voxels with nonzero spin
and to estimate the spectral linewidth for those voxels. The parsimonious representation of spin locations
and linewidths permits an order of magnitude reduction in data acquisition time, compared to four-
dimensional tomographic reconstruction using traditional spectral-spatial imaging. The proposed oxim-
etry method is experimentally demonstrated for a lithium octa-n-butoxy naphthalocyanine (LiNc–BuO)
probe using an L-band EPR spectrometer.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Electron paramagnetic resonance (EPR) spectroscopy enables
noninvasive measurement of free radicals in biological samples.
The principle underlying EPR spectroscopy is the absorption of
microwave energy by paramagnetic species in the presence of an
external magnetic field, resulting in the transition between the
spin states of the unpaired electron. Biological applications of
EPR spectroscopy and imaging have become prominent during
the past two decades owing to the study of oxygen free radicals
in the pathogenesis of disease processes. More broadly, the tech-
nique has been known and used in numerous applications in other
branches of science for six decades.

1.1. EPR oximetry

EPR oximetry, first reported by Hyde [1] and later exten-
sively investigated by Swartz and colleagues [2–5], enables re-
peated measurements of oxygen concentrations in living
tissues. In vivo oximetry [6–9] is the measurement of partial
pressure of oxygen (pO2) by observing oxygen-induced broad-
ening in the lineshape of an introduced paramagnetic probe.
Upon interaction with a spin probe, oxygen increases the
relaxation rate of the probe, mainly via Heisenberg exchange.
This leads to an oxygen concentration dependent increase in
the linewidth of the probe. The changes in linewidth as a
function of pO2 are well characterized for a number of EPR
ll rights reserved.
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probes. Thus, for a known probe, the change in EPR linewidth
can be regarded as a direct measure of pO2. The uniqueness
of the method is its ability to report the absolute value of
pO2.

EPR oximetry requires the incorporation of an oxygen sensitive
paramagnetic spin probe, such as a solid particulate, into the tissue
of interest. Considerable progress has been made in the develop-
ment of oximetry probes [10–17]. Lithium octa-n-butoxy-substi-
tuted naphthalocyanine radical (LiNc-BuO) is a recently
developed particulate oximetry spin probe [14]. The LiNc-BuO
crystals are composed of stacks of neutral radicals of lithiated
naphthalocyanine macrocycles. The EPR spectra of these particu-
lates are characterized by a narrow Lorentzian absorption under
anoxic conditions. The biostable particulates are capable of sensing
and reporting cellular and tissue pO2 with oxygen sensitivity better
than 0.1 mmHg. This enables precise, accurate and repeated
measurement and mapping of oxygen in tissues over extended
periods of time.

EPR oximetry holds promise for several clinical applications.
In tumors, the oxygen concentration is useful in determining
the response to different treatment options [18–23]. Likewise,
the presence of oxygen plays a critical role in the pathophys-
iology of myocardial injury during both ischemia and subse-
quent reperfusion [24]. Therefore, the ability of EPR oximetry
to make repeated minimally invasive measurements of oxygen
over time can provide vital information to characterize the
progression of a disease state, and to determine the efficacy
of different treatment options. Unfortunately, long data acquisi-
tion times have curtailed wider use of EPR for these
applications.
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1.2. EPR oximetry techniques

Direction of a static magnetic field gradient is used in EPR imaging
to encode spatial dimensions. An additional parameter is required to
encode spectral information. In spectral–spatial imaging, variation
of the gradient magnitude provides the additional dimension. The
relative magnitudes of field gradient and sweep width define a pseu-
do viewing angle for a projection measured in the spectral–spatial
space. Introduced for NMR [25,26], continuous-wave (CW) spec-
tral–spatial imaging was applied to EPR in two dimensions (one
spectral, one spatial) [27–29]. In vivo 2D spectral–spatial EPR imag-
ing was demonstrated at 250 MHz with curve fitting used as post-
processing to estimate spectral parameters [6].

Spectral–spatial EPR was subsequently extended to 4D imaging.
Four-dimensional imaging of an isolated rat heart was demon-
strated with an L-band system [30]; oxygen concentration was in-
ferred from peak-to-peak linewidths at each spatial location. Elas
et al. [31] improved SNR using high-magnitude Zeeman modula-
tion and estimated linewidths by fitting a parametric spectral
model [32] at each spatial location in a 4D reconstructed image.
Continuous-wave EPR has also been used to measure free induc-
tion decay in the single-point (or constant time) imaging technique
[33,34]. CW EPR techniques allow simultaneous detection of multi-
ple paramagnetic species and apply for arbitrary spin distributions.

The spin echo imaging technique gives T2-based oximetric
information, in contrast to the T�2 oxygen dependence exploited
in CW spectral-spatial techniques. EPR spin-echo imaging was
developed by Eaton et al. [35,36] at X-band. Recently, Mailer
et al. reported spin-echo imaging at 250 MHz [37], demonstrating
advantages relative to free induction decay (FID) measurement:
improved signal strength, no distortion due to instrumental dead
time, and reduced acquisition time.

EPR oximetry has also been developed with variable gradient
strength but fixed field direction. Swartz et al. have pioneered an
approach coined ‘‘multi-site oximetry”. A single favorable gradient
direction is assumed for which each of several isolated implants is
resolved. The EPR lineshape for the probe material is assumed
Lorentzian, with unknown half-width at half-maximum (HWHM)
s. A spectrum is recorded for each of two gradient magnitudes,
G2 > G1, and the two spectra are therefore related by convolution
with a Lorentzian function having HWHM of sð1=G1 � 1=G2Þ. The
linewidth parameter, s, is then estimated by nonlinear least-
squares curve fit; the curve fit is computed on intervals for which
spectral components are non-overlapping. In this manner, the line-
width of each probe site is estimated without reconstruction of the
unknown projection of the paramagnetic spin density. The key
assumption is that lineshapes are resolved with a single, one-
dimensional magnetic field gradient. Thus, this method localizes
pO2 measurements in one dimension.

Microwave power saturation provides an alternative to mag-
netic field strength by encoding spectral information into the var-
iation of EPR image intensity. Introduced by Bacic et al. [38], this
oximetry technique is based on T1 relaxation of electron spin.
The approach can acquire spectral–spatial information with only
twice the acquisition time of spatial imaging [39] but has spatially
varying image resolution and requires narrow linewidth probes
with relatively lower sensitivity to oxygen concentration [40].

1.3. Proposed approach

We present a method for EPR oximetry in three spatial dimen-
sions using a particulate probe. The technique provides estimates
of the location, extent, spin density and Lorentzian linewidth of
each discrete probe implant. Each probe implant is a small
collection of spins encapsulated in an oxygen permeable lattice;
an implant is assumed to experience a constant partial pressure
of oxygen across its extent. The shape of the implant is arbitrary
and may be irregular from one implant to the next. As in other
CW spectral–spatial imaging techniques, data is collected by vary-
ing the direction and strength of an applied magnetic gradient
field. The proposed data processing exploits the sparseness of spin
probe implants to detect voxels with nonzero spin and to estimate
the spectral linewidth for each implant.

Each spatial voxel is characterized by an unknown spin density
and linewidth. Further, each projection has unknown main mag-
netic field drift and linear baseline drift. These parameters are esti-
mated jointly from a small set of projections. The sparseness of the
probe implants implies that spin density is zero at most voxels,
which in turn makes the nonlinear estimation problem a stable
and tractable numerical task. The parsimonious representation of
sparse spin locations and associated probe implant linewidths
permits orders of magnitude reduction in the number of acquired
projections, compared to 4D reconstruction of an arbitrary spectral–
spatial object. A small sweep width is employed, relative to widths
required for 4D backprojection or Fourier imaging, further
reducing acquisition time. The estimation procedure does not re-
quire that implant lineshapes are resolved in any single projection.

In Section 2, the spectral-spatial data model is defined for EPR
spectroscopy using a small amplitude Zeeman modulation and
lock-in detection of the absorption first harmonic. Section 3 pre-
sents the data processing procedure for fitting the data model to
acquired spectra. In Section 4, the proposed oximetry method is
experimentally demonstrated for LiNc–BuO probe using an L-band
EPR spectrometer. Experimental results and extensions are dis-
cussed in Section 5.

2. Data model

In this section, a mathematical model is formulated to describe
the 4D spectral–spatial EPR measurements in terms of the un-
known spin density and spectral profile.

2.1. Forward model for 4D spectral–spatial EPR imaging

Magnetic resonance spectra measured using static linear mag-
netic field gradients may be viewed as projections of an object with
an intrinsic spectral dimension [25,27,29]. Following previous 4D
spectral–spatial developments [30], we describe the acquired spec-
tra in terms of the Radon transform of a spectral–spatial object,
assuming a small amplitude Zeeman modulation and lock-in
detection of the absorption first harmonic. Our 4D forward model
is an extension of the 2D model described in [41].

The forward data model is formulated by discretizing the three
spatial dimensions into voxels and treating the spectral dimension
as continuous. Let the spatial dimensions be denoted by ðx; y; zÞ and
the spectral dimension by h. The field of view (FOV) L along any
spatial dimension is discretely approximated as K uniformly
spaced piecewise constant intervals. Throughout this and subse-
quent sections it is assumed that the lineshape is a Lorentzian.

Consider voxel k whose boundaries along the three dimensions
are xp; xpþ1; yq; yqþ1; zr; zrþ1 and let dk and sk be the spin density and
HWHM respectively at that voxel location. The 4D spectral–spatial
object at voxel location k can be written as,

Fðx; y; z;hÞ ¼ dksk

ðh� hdÞ2 þ s2
k

;

for xp 6 x < xpþ1; yq 6 y < yqþ1; zr 6 z < zrþ1

ð1Þ

where h 2 ½�DH=2;DH=2�, DH being the spectral window, and hd is
the main magnetic field drift in the instrument which is the differ-
ence between the main magnetic field and the resonance field (ho).
It is assumed that h0 is constant over the entire FOV. Moreover if the
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instrument is known to be stable i.e., no magnetic field drift occurs,
then hd can be considered as known and equal to zero.

We describe the 4D spectral-spatial data acquisition in the
spherical polar coordinate system (s; g;/; h) defined by

x ¼ s sin h sin / cos g

y ¼ s sin h sin / sin g

z ¼ s sin h cos /

h ¼ s cos h

ð2Þ

Here ðg;/Þ define the spatial orientation of the magnetic field gradi-
ent and s gives the uniform sweep field. The pseudo angle h is re-
lated to the magnitude of the magnetic field gradient by

G ¼ tan h� DH=L ð3Þ

where G is the applied gradient strength. The range of h is assumed
to be ð� p

2 ;
p
2Þ. The 4D Radon transform of the object is obtained by

integrating the spectral-spatial object Fðx; y; z;hÞ along the hyper-
plane

s ¼ ððx cos gþ y sin gÞ sin /þ z cos /Þ sin hþ h cos h ð4Þ

The same hyper-plane can be written as

h ¼ s
cos h

� ððx cos gþ y sin gÞ sin /þ z cos /Þ tan h

We define f ðx; y; zÞ � h i.e.,

f ðx; y; zÞ ¼ s
cos h

� ððx cos gþ y sin gÞ sin /þ z cos /Þ tan h

The differential volume [42] of the spectral–spatial object
Fðx; y; z;hÞ through this hyper-surface is given by

dV ¼ Fðx; y; z; hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

x þ f 2
y þ f 2

z

q
dxdydz ð5Þ

where fx ¼ of ðx;y;zÞ
ox , fy ¼ of ðx;y;zÞ

oy and fz ¼ of ðx;y;zÞ
oz . Thus the 4D Radon trans-

form of Fðx; y; z;hÞ is obtained by adding the contributions from all
voxels and is given by,

Pðg;/; h; sÞ ¼
Z

dV

¼
Z

x

Z
y

Z
z

Fðx; y; z;hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

x þ f 2
y þ f 2

z

q
dxdydz

¼ 1
cos h

X
k

Z xpþ1

x¼xp

Z yqþ1

y¼yq

Z zrþ1

z¼zr

Fðx; y; z;hÞdxdydz ð6Þ

If the Zeeman modulation amplitude, Bm, is small, then the
measured output is well approximated by the first harmonic
absorption spectrum [43] and is given by the first derivative of
the 4D Radon transform scaled by cos2 h. Carrying out the integra-
tion in Eq. (6) and then differentiating with respect to s,

ePðg;/; h; sÞ ¼ X
k

dksk

abce2

1
sk
�v1 tan�1 v1

sk

� ���
þ v2 tan�1 v2

sk

� �
þ v3 tan�1 v3

sk

� �
þ v4 tan�1 v4

sk

� �
� v5 tan�1 v5

sk

� �
� v6 tan�1 v6

sk

� �
þ v7 tan�1 v7

sk

� �
� v8 tan�1 v8

sk

� ��
þ 1

2
ln 1þ v1

sk

� �2
 !

� ln 1þ v2

sk

� �2
 !(

� ln 1þ v3

sk

� �2
 !

� ln 1þ v4

sk

� �2
 !

þ ln 1þ v5

sk

� �2
 !

þ ln 1þ v6

sk

� �2
 !

� ln 1þ v7

sk

� �2
 !

þ ln 1þ v8

sk

� �2
 !)#

ð7Þ
where,

a ¼ cos g sin / tan h ð8Þ
b ¼ sin g sin / tan h ð9Þ
c ¼ cos / tan h ð10Þ
e ¼ cos h ð11Þ

v1 ¼ czrþ1 þ byq �
s
e
þ axp þ hd

� 	
ð12Þ

v2 ¼ czrþ1 þ byqþ1 �
s
e
þ axp þ hd

� 	
ð13Þ

v3 ¼ czrþ1 þ byq �
s
e
þ axpþ1 þ hd

� 	
ð14Þ

v4 ¼ czr þ byqþ1 �
s
e
þ axpþ1 þ hd

� 	
ð15Þ

v5 ¼ czr þ byq �
s
e
þ axpþ1 þ hd

� 	
ð16Þ

v6 ¼ czr þ byqþ1 �
s
e
þ axp þ hd

� 	
ð17Þ

v7 ¼ czr þ byq �
s
e
þ axp þ hd

� 	
ð18Þ

v8 ¼ czrþ1 þ byqþ1 �
s
e
þ axpþ1 þ hd

� 	
ð19Þ

The first harmonic absorption from Zeeman modulation thus
becomes,

Yzðg;/; h; sÞ ¼ Bm cos2 hePðg;/; h; sÞ ð20Þ

Note that it is assumed in Eq. (7) through Eq. (20) that g and / are
not integer multiples of p=2. The limiting cases for these singulari-
ties can be obtained by application of L’Hôpital’s rule to the corre-
sponding equations. L’Hôpital’s rule gives that if lim f ðxÞ ! 0 and
lim gðxÞ ! 0 as x! a, then,

lim
x!a

f ðxÞ
gðxÞ ¼ lim

x!a

of ðxÞ=ox
ogðxÞ=ox

To complete the data model, three parameters are included for
each projection: a linear approximation to baseline drift, asþ b,
and a magnetic field drift, hd. The magnetic field drift is assumed
unknown, but fixed, for each projection and is allowed to vary
independently from projection to projection. Thus the measured
output can be written as

Yðg;/; h; sÞ ¼ Yzðg;/; h; sÞ þ aðg;/; hÞs
þ bðg;/; hÞ þ Nðg;/; h; sÞ ð21Þ

where Nðg;/; h; sÞ is zero mean additive white Gaussian measure-
ment noise with variance r2. Also in Eq. (12) through Eq. (19) hd be-
comes hdðg;/; hÞ.

Eq. (21) gives a generic model for 4D spectral-spatial imaging
where each voxel can have different spin density and linewidth.
For the proposed approach we assume that the linewidth is con-
stant within any implant but the spin density can vary within it.
This reduces the number of unknown linewidth parameters to
the number of implants present.

In summary, the spin density at every voxel, linewidth for each
implant, the baseline drift for each projection, and the magnetic
field drift for each projection comprise the unknown parameters
in the data model.

3. Sparse imaging

In this section, we describe the data processing procedures for
estimating implant locations and linewidths.

We assume particulate paramagnetic probe implants are
introduced to the region of interest and fill only a small fraction
of the field of view. Each implant is small and is assumed to
experience a constant pO2 across the implant. For example, in
the experiment presented in Section 4, four implants, each
approximately 2 mm3, are placed in an 8000 mm3 FOV. EPR
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spectra are collected for 32 different projections. The model given
in Eq. (21) describes measured EPR spectra as a function of sev-
eral unknowns. The parameters to be estimated from the noisy
spectra are: spin density for each voxel occupied by an implant;
one linewidth for each implant; and three calibration parameters
for each projection—a magnetic field drift, a baseline drift, and a
baseline offset.

In three spatial dimensions, the number of variables in the non-
linear parametric model grows very large and beyond the ability of
numerical methods to directly find the minimum error solution. To
reduce the dimensionality, we find initial estimates of implant
locations by adopting a linearized model with homogeneous line-
shape. The linear model allows simple use of sparseness of the im-
plants within the field of view. For example, with
128 � 128 � 128 voxels and 128 projections, the curve fit requires
4.19 million unknowns, including parameters for baseline drift and
unknown magnetic field drift for each projection. But, with eight
implants each filling, on average, an irregular volume of 128 vox-
els, a 4000:1 reduction is obtained in the number of free variables.

The initial estimate is computed as a sparse solution to the lin-
ear model using ‘1-penalized least-squares, as discussed below.
This convex optimization task is computationally simple. The ini-
tial probe sites are biased by blurring due to the incorrect, but con-
venient, assumption of homogeneous lineshape in the linearized
model. In the second step, the bias is removed and the linewidths
are estimated by applying the nonlinear model in Eq. (21) to the
full 3D volume, but with regions of zero spin having been identified
by the initialization. Hence, the curve fit in 3D is computable using
a gradient descent method. Note that the shapes and the exact
sizes of implants are unknown in this approach.

Thus, the complexity and nonconvexity of the large nonlinear
regression encountered in three spatial dimensions are overcome
by using a linearized model to detect the approximate locations
of the unknown implants.

3.1. Sparse initialization

To detect regions of nonzero spin using only a few projec-
tions, we temporarily assume a spatially-invariant imaging mod-
el and employ a sparse reconstruction technique. That is, we
assume a fixed homogeneous linewidth throughout the FOV
and construct a blurred image. A reconstructed spin density
map is sought having very few non-zero voxels. Computation
of sparse solutions to underdetermined linear equations has
been a topic of considerable recent interest [44–49]. For simplic-
ity, we adopt the technique of Gradient Projection Sparse Recon-
struction [50], which solves

min
d

1
2

y� Adk k2 þ k
X

i

di s:t: d P 0 ð22Þ

Here, y represents the list of all measured data samples and d is the
list of non-negative spin densities for all voxels. The matrix A is
computed from Eq. (20), using a fixed linewidth and magnetic field
drift. The first term in Eq. (22) gives the error between the data and
the model and the second term gives k times the ‘1 norm of the spin
density vector d. The ‘1 norm of a vector is the summation of abso-
lute values of all the elements; here the absolute value is same as
the value of the element since spin densities are constrained to
non-negative numbers. We select the sparsity parameter k accord-
ing to

k ¼ 0:1 AT y



 




1
ð23Þ

as suggested in [50]. However, we have observed that values of k
ranging about an order of magnitude give very similar results in
the problems considered.
From the reconstructed spin density map, we use the cluster-
data routine from Matlab1 7.1 to cluster the voxels into candidate
regions corresponding to the individual implants. The centroid of
each region is used to identify candidate nonzero voxels; specifically,
voxels inside a sphere with radius twice the maximum extent of an
implanted probe are detected for further processing. Thus, the sparse
initialization serves merely to safely discard many voxels with zero
spin, thereby dramatically reducing the dimensionality and com-
plexity of the nonlinear curve fitting task.

3.2. Gradient descent

Armed with a list of candidate non-zero voxels, the model in Eq.
(21) is used to estimate the unknown parameters. A nonlinear
least-squares fit is computed using the lsqnonlin routine from
Matlab 7.1; note that the derivative of the model with respect to
each parameter is readily computable from Eq. (21), and used in
lsqnonlin to provide a gradient descent method. Unknown
parameters are initialized to d ¼ 0, s ¼ smin, a ¼ b ¼ 0, where smin

is the minimum feasible value of s. The initial value for magnetic
field drift, hd, for each projection is the average from the zero gra-
dient projections taken before and after the data collection.

4. Experimental results

4.1. Experiment design

A phantom using 50 ll capillary tubes was constructed. Each
capillary tube (inner diameter 0.9 mm) was filled with lithium
octa-n-butoxy naphthalocyanine (LiNc–BuO) [14] up to a height
of 3–5 mm. Each tube contained approximately 8� 1016 spins.
Variations in linewidths were obtained by using different amounts
of sodium hydrosulfite (Na2S2O4) and water, a combination known
for changing the oxygen concentration [51] to which the sample
will be exposed. A total of 18 capillary tubes were prepared, out
of which 4 were used to construct the phantom. The four tubes
were selected to provide both a large range of linewidths and a
subset of closely matched linewidths. The HWHM linewidths of
the spins in the tubes were estimated by least squares curve fit
to the individual zero-gradient spectrum, and the characterization
result is reported in Table 1. The tube schematic and photographs
of the phantom and resonator are shown in Figs. 1 and 2.

An L-Band (1.2 GHz) EPRI system was used for data acquisition.
A volume resonator with diameter 12.6 mm and sensitive height
12 mm was used. Spectrometer settings were: incident microwave
power 5 mW, resonance field 457.5 G, sweep width 6 G, lock in
time constant 0.01 s, modulation amplitude 0.1 G, scan rate
1.53 G/s, field of view 2 cm � 2 cm � 2 cm, maximum gradient
strength applied 20 G/cm and corresponding maximum spectral
angle h ¼ 81:47�. The four tubes were inserted into a cylindrical
plastic holder that was pushed inside the cavity. In the absence
of magnetic field gradient, the measured SNR was 25.2 dB and
PSNR was 101.7 for the composite spectrum of the phantom con-
sisting of four probe implants. Here SNR is defined as 20log10ðSS

SN
Þ

where SS is the norm of the signal and SN is the norm of the residual
by least-squares curve fit to the zero-gradient composite spectrum
(which is considered as noise). PSNR is defined as the ratio of the
peak-to-peak signal and the noise (residual) standard deviation.
(See Fig. 3).

Six sets of data were collected each having 32 projections. The
projection angles were generated using 4D uniform distribution
of points over a hypersphere [52]. For each set of angles a random
initialization of projection angles was used so that projection



Table 1
Estimated linewidths of the implants from different datasets

Dataset Probe 1
G (mmHg)

Probe 2
G (mmHg)

Probe 3
G (mmHg)

Probe 4
G (mmHg)

Characterization 0.32 (7.4) 0.40 (21.6) 0.46 (32.9) 1.36 (161.0)
Dataset 1 0.31 (6.1) 0.39 (19.3) 0.48 (36.0) 1.36 (160.0)
Dataset 2 0.32 (8.2) 0.39 (20.4) 0.45 (30.1) 1.44 (171.8)
Dataset 3 0.32 (7.8) 0.38 (19.0) 0.46 (31.8) 1.42 (169.0)
Dataset 4 0.30 (4.7) 0.38 (17.7) 0.45 (31.3) 1.26 (145.1)
Dataset 5 0.32 (7.8) 0.40 (21.1) 0.45 (31.5) 1.48 (178.6)
Dataset 6 0.29 (2.8) 0.37 (17.2) 0.41 (23.2) 1.42 (169.1)
RMS error 0.01 (2.3) 0.02 (4.4) 0.02 (2.8) 0.08 (11.5)

The first row gives the characterization results and the last row reports the root mean square error. The values within parentheses show corresponding pO2 values.

Fig. 1. Schematic of tube construction. Tube was filled with lithium octa-n-butoxy
naphthalocyanine (LiNc–BuO) up to a height of 3–5 mm; different amounts of
Na2S2O4 and water were used to obtain variation in linewidth.
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angles corresponding to the final uniform distributions were differ-
ent for each set. Since the information content of a low gradient
projection is small [41], the permissible spectral angle range was
selected to be 30–81.47�. The upper limit is a hardware constraint
on maximum gradient strength. On average each set of 32
projections required 8.8 min acquisition time.

4.2. Estimation of linewidth

In the initialization stage sparse 16 � 16 � 16 spin density maps
were estimated. Fig. 4 shows the sparse spin density map for dataset
Fig. 2. (Left) Four capillary tubes used as phantom consisting of four p
1. The matrix A was explicitly calculated from Eq. (20). The fixed line-
width assumed for the entire FOV was 1.0 G. The magnetic field drift
hd was taken as the mean value of magnetic field drift obtained from
the zero gradient projection measured at the beginning and at the
end of data collection. Then four regions were identified by cluster-
ing. For the second stage a 32 � 32 � 32-voxel reconstruction was
computed. The spin density and linewidths were estimated for the
four spherical regions with radius of 3 voxels. Final spin density
and linewidth estimates are shown in Fig. 4. Baseline drift and mag-
netic field drift corrections were estimated as described in Section 2.
The characterized and estimated HWHM linewidths are provided in
Table 1. Average computation time was 70.3 min on a
Pentium�D3:2 GHz processor with 3 GB RAM. The computation
time at each iteration is dominated by evaluation of the cost func-
tion, Eq. (21), and its derivatives. Because each data point from each
projection can be independently calculated in Eq. (21), fast compu-
tation can be readily accomplished using parallel processors.

5. Discussion

The estimated linewidths reported in Gauss can be converted to
pO2 values as given in Table 1 using the calibration curves obtained
following the procedure described in [14]. The calibration curves of
pO2 vs. HWHM linewidth are linear with a slope of 0.0056 G/
mmHg and intercept of 0.28 G for the first three implants and a
slope of 0.0068 G/mmHg and intercept of 0.28 G for the fourth im-
plant. The root mean square (RMS) error for the implant with the
highest linewidth is significantly higher than the other three im-
plants which can be attributed to the low peak-to-peak signal from
the broadest lineshape as seen in Fig. 5. For the three probe im-
plants corresponding to pO2 of less than 33 mmHg, the RMS error
is observed to be 3.3 mmHg. For all four implants, the overall RMS
error is 6.4 mmHg.

For applications in which spatially sampled pO2 measurements
provide the relevant biological information, the proposed proce-
dure yields a 4D spectral–spatial image from very few field sweeps.
While existing 4D image procedures [30,31] use approximately
robes. (Right) The phantom inside the L-Band (1.2 GHz) resonator.



0 50 100 150 200 250 300
—1500

—1000

—500

0

500

1000

1500

2000

2500
Three typical sample projections of dataset 1

Sample Number

M
ea

su
re

d 
D

at
a

 

Spectrum A
Spectrum B
Spectrum C

Fig. 3. Three typical projection samples from the first dataset. The four lineshapes are not resolved in any of the projections. (Spectrum A)
g ¼ 75:01� ;/ ¼ 86:73�; h ¼ �81:47� , (Spectrum B) g ¼ 52:55�;/ ¼ 89:94� ; h ¼ �51:16� and (Spectrum C) g ¼ 77:48� ;/ ¼ 45:68�; h ¼ �81:47� . Small sweep-width reduces
data collection time and increases SNR by avoiding the tails of the spectra where the signal strength is very low.
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1000 field sweeps to provide maps of arbitrarily diffused spin
probes, here the explicit use of knowledge about sparseness of par-
ticulate probe implants and incorporation of parametric lineshape
into the forward model made it possible to measure pO2 using 32
sweeps.
The proposed parametric estimation approach offers significant
reduction in data acquisition time for spectral-spatial EPR imaging.
The savings come from both a low number of projections and a
small spectral window; in contrast, a large spectral window is re-
quired in techniques that first invert the Radon transform before
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using the Lorentzian line shape. The average data collection time
for the six datasets was 8.8 min/dataset considering a 1.53 G/s scan
rate. At the same scan rate considering a spectral window of 12
times the maximum HWHM, the data collection time is 6 h
31 min for 512 projections generated using 4D uniform distribu-
tion of points over a hypersphere [52]. The acquisition time reduc-
tion is more than 40:1.

The proposed imaging approach is a direct inversion of the mea-
sured data using a nonlinear regression. Unlike tomographic ap-
proaches, no approximation error is introduced by truncation of
the lineshape by the spectral window. The estimation procedure
is applicable for any set of arbitrarily spaced projection angles
and is not handicapped by the missing angle artifact introduced
by tomographic inversion. Additionally, the estimation approach
directly and explicitly incorporates into the inversion the noise
properties of the spectral–spatial measurements. In contrast, in
tomographic processing with magnetic field modulation, numeri-
cal integration to obtain projection data introduces strong noise
correlation, and backprojection disregards the high variability in
PSNR that is due to the cos2 h scaling seen in Eq. (20).

Our approach is based on parameter estimation. The accuracy of
the pO2 estimates, as quantified by the mean-squared error, is case
dependent and is determined by several factors: SNR, model mis-
match (field inhomogeneity, non-Lorentzian lines, etc.), object
geometry, and collection angles. Sensitivity of the estimated values
can be predicted using the Cramèr–Rao (CR) lower bound [41]. Fur-
ther, the CR bound analysis informs the choice of projection angles
and the trade-off between more angles and higher SNR per angle.

For significant SNR enhancement, the proposed approach may
be extended for use with large-amplitude Zeeman modulation
and joint measurement [53] of absorption and dispersion. The
extension requires inclusion of the absorption and dispersion com-
ponents into the forward model. The over-modulation may provide
approximately 3–5 times enhancement in peak signal amplitudes
[31]. Likewise, joint measurement of multiple harmonics from both
absorption and dispersion spectra can provide approximately four
times improvement in SNR [54], with a corresponding acceleration
in acquisition time. With these extensions, the proposed sparse
EPR oximetry method may be viewed as combining five themes
present in the literature: (i) the sparseness of particulate probes
exploited by Grinberg et al. in multi-site oximetry [5]; (ii) the
SNR enhancement of time-locked subsampling proposed by Hyde
et al. [53]; (iii) the SNR enhancement of curve fitting to over-mod-
ulated Lorentzian line shapes achieved by Elas et al. [31]; (iv) 4D
localization provided by spectral-spatial imaging [30,31]; and (v)
dimension reduction [41] by directly estimating Lorentzian line
parameters, rather than first imaging a spectral–spatial object.

6. Conclusions

Despite significant advances made in recent decades, long
acquisition times have hampered the wide-spread use of free rad-
ical and oxygen measurements in biological systems using EPR
imaging. In the proposed method, we estimate sampled maps of
pO2 by sparsely introducing a particulate probe and collecting
EPR spectra for a small sequence of applied magnetic gradient
fields. The processing exploits two assumptions that hold for mul-
ti-site measurements: spectral lineshapes are from a parametric
family of functions, and paramagnetic implants are sparse within
the field of view. Resolution of estimated pO2 is linewidth depen-
dent. For a LiNc–BuO probe, the proposed processing was experi-
mentally demonstrated with 32 projections collected at L-band
with 25.2 dB zero gradient projection SNR. For enhanced SNR and
hence reduced acquisition time or improved resolution, the ap-
proach is readily extensible to Zeeman over-modulation and to
joint acquisition of absorption and dispersion spectra.
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